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Segmentation

So far we have been putting the entire address space of each process in
memory. With the base and bounds registers, the OS can easily relocate
processes to different parts of physical memory. However, you might
have noticed something interesting about these address spaces of ours:
there is a big chunk of “free” space right in the middle, between the stack
and the heap.

As you can imagine from Figure 16.1, although the space between the
stack and heap is not being used by the process, it is still taking up phys-
ical memory when we relocate the entire address space somewhere in
physical memory; thus, the simple approach of using a base and bounds
register pair to virtualize memory is wasteful. It also makes it quite hard
to run a program when the entire address space doesn’t fit into memory;
thus, base and bounds is not as flexible as we would like. And thus:

THE CRUX: HOW TO SUPPORT A LARGE ADDRESS SPACE

How do we support a large address space with (potentially) a lot of
free space between the stack and the heap? Note that in our examples,
with tiny (pretend) address spaces, the waste doesn’t seem too bad. Imag-
ine, however, a 32-bit address space (4 GB in size); a typical program will
only use megabytes of memory, but still would demand that the entire
address space be resident in memory.

16.1 Segmentation: Generalized Base/Bounds

To solve this problem, an idea was born, and it is called segmenta-
tion. It is quite an old idea, going at least as far back as the very early
1960’s [H61, G62]. The idea is simple: instead of having just one base
and bounds pair in our MMU, why not have a base and bounds pair per
logical segment of the address space? A segment is just a contiguous
portion of the address space of a particular length, and in our canonical
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Figure 16.1: An Address Space (Again)

address space, we have three logically-different segments: code, stack,
and heap. What segmentation allows the OS to do is to place each one
of those segments in different parts of physical memory, and thus avoid
filling physical memory with unused virtual address space.

Let’s look at an example. Assume we want to place the address space
from Figure 16.1 into physical memory. With a base and bounds pair
per segment, we can place each segment independently in physical mem-
ory. For example, see Figure 16.2 (page 3); there you see a 64KB physical
memory with those three segments in it (and 16KB reserved for the OS).
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SEGMENTATION 3
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Figure 16.2: Placing Segments In Physical Memory

As you can see in the diagram, only used memory is allocated space
in physical memory, and thus large address spaces with large amounts of
unused address space (which we sometimes call sparse address spaces)
can be accommodated.

The hardware structure in our MMU required to support segmenta-
tion is just what you’d expect: in this case, a set of three base and bounds
register pairs. Figure 16.3 below shows the register values for the exam-
ple above; each bounds register holds the size of a segment.

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

Figure 16.3: Segment Register Values

You can see from the figure that the code segment is placed at physical
address 32KB and has a size of 2KB and the heap segment is placed at
34KB and also has a size of 2KB.

Let’s do an example translation, using the address space in Figure 16.1.
Assume a reference is made to virtual address 100 (which is in the code
segment). When the reference takes place (say, on an instruction fetch),
the hardware will add the base value to the offset into this segment (100 in
this case) to arrive at the desired physical address: 100 + 32KB, or 32868.
It will then check that the address is within bounds (100 is less than 2KB),
find that it is, and issue the reference to physical memory address 32868.
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4 SEGMENTATION

ASIDE: THE SEGMENTATION FAULT

The term segmentation fault or violation arises from a memory access
on a segmented machine to an illegal address. Humorously, the term
persists, even on machines with no support for segmentation at all. Or
not so humorously, if you can’t figure out why your code keeps faulting.

Now let’s look at an address in the heap, virtual address 4200 (again
refer to Figure 16.1). If we just add the virtual address 4200 to the base
of the heap (34KB), we get a physical address of 39016, which is not the
correct physical address. What we need to first do is extract the offset into
the heap, i.e., which byte(s) in this segment the address refers to. Because
the heap starts at virtual address 4KB (4096), the offset of 4200 is actually
4200 minus 4096, or 104. We then take this offset (104) and add it to the
base register physical address (34K) to get the desired result: 34920.

What if we tried to refer to an illegal address, such as 7KB which is be-
yond the end of the heap? You can imagine what will happen: the hard-
ware detects that the address is out of bounds, traps into the OS, likely
leading to the termination of the offending process. And now you know
the origin of the famous term that all C programmers learn to dread: the
segmentation violation or segmentation fault.

16.2 Which Segment Are We Referring To?

The hardware uses segment registers during translation. How does it
know the offset into a segment, and to which segment an address refers?

One common approach, sometimes referred to as an explicit approach,
is to chop up the address space into segments based on the top few bits
of the virtual address; this technique was used in the VAX/VMS system
[LL82]. In our example above, we have three segments; thus we need two
bits to accomplish our task. If we use the top two bits of our 14-bit virtual
address to select the segment, our virtual address looks like this:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Offset

In our example, then, if the top two bits are 00, the hardware knows
the virtual address is in the code segment, and thus uses the code base
and bounds pair to relocate the address to the correct physical location.
If the top two bits are 01, the hardware knows the address is in the heap,
and thus uses the heap base and bounds. Let’s take our example heap
virtual address from above (4200) and translate it, just to make sure this
is clear. The virtual address 4200, in binary form, can be seen here:
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SEGMENTATION 5

As you can see from the picture, the top two bits (01) tell the hardware
which segment we are referring to. The bottom 12 bits are the offset into
the segment: 0000 0110 1000, or hex 0x068, or 104 in decimal. Thus, the
hardware simply takes the first two bits to determine which segment reg-
ister to use, and then takes the next 12 bits as the offset into the segment.
By adding the base register to the offset, the hardware arrives at the fi-
nal physical address. Note the offset eases the bounds check too: we can
simply check if the offset is less than the bounds; if not, the address is ille-
gal. Thus, if base and bounds were arrays (with one entry per segment),
the hardware would be doing something like this to obtain the desired
physical address:

1 // get top 2 bits of 14-bit VA

2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

3 // now get offset

4 Offset = VirtualAddress & OFFSET_MASK

5 if (Offset >= Bounds[Segment])

6 RaiseException(PROTECTION_FAULT)

7 else

8 PhysAddr = Base[Segment] + Offset

9 Register = AccessMemory(PhysAddr)

In our running example, we can fill in values for the constants above.
Specifically, SEG MASK would be set to 0x3000, SEG SHIFT to 12, and
OFFSET MASK to 0xFFF.

You may also have noticed that when we use the top two bits, and we
only have three segments (code, heap, stack), one segment of the address
space goes unused. Thus, some systems put code in the same segment as
the heap and thus use only one bit to select which segment to use [LL82].

There are other ways for the hardware to determine which segment
a particular address is in. In the implicit approach, the hardware deter-
mines the segment by noticing how the address was formed. If, for ex-
ample, the address was generated from the program counter (i.e., it was
an instruction fetch), then the address is within the code segment; if the
address is based off of the stack or base pointer, it must be in the stack
segment; any other address must be in the heap.

16.3 What About The Stack?

Thus far, we’ve left out one important component of the address space:
the stack. The stack has been relocated to physical address 28KB in the di-
agram above, but with one critical difference: it grows backwards. In phys-
ical memory, it starts at 28KB and grows back to 26KB, corresponding to
virtual addresses 16KB to 14KB; translation must proceed differently.

The first thing we need is a little extra hardware support. Instead of
just base and bounds values, the hardware also needs to know which way
the segment grows (a bit, for example, that is set to 1 when the segment
grows in the positive direction, and 0 for negative). Our updated view of
what the hardware tracks is seen in Figure 16.4.
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6 SEGMENTATION

Segment Base Size Grows Positive?
Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

With the hardware understanding that segments can grow in the neg-
ative direction, the hardware must now translate such virtual addresses
slightly differently. Let’s take an example stack virtual address and trans-
late it to understand the process.

In this example, assume we wish to access virtual address 15KB, which
should map to physical address 27KB. Our virtual address, in binary
form, thus looks like this: 11 1100 0000 0000 (hex 0x3C00). The hard-
ware uses the top two bits (11) to designate the segment, but then we are
left with an offset of 3KB. To obtain the correct negative offset, we must
subtract the maximum segment size from 3KB: in this example, a seg-
ment can be 4KB, and thus the correct negative offset is 3KB minus 4KB
which equals -1KB. We simply add the negative offset (-1KB) to the base
(28KB) to arrive at the correct physical address: 27KB. The bounds check
can be calculated by ensuring the absolute value of the negative offset is
less than the segment’s size.

16.4 Support for Sharing

As support for segmentation grew, system designers soon realized that
they could realize new types of efficiencies with a little more hardware
support. Specifically, to save memory, sometimes it is useful to share
certain memory segments between address spaces. In particular, code
sharing is common and still in use in systems today.

To support sharing, we need a little extra support from the hardware,
in the form of protection bits. Basic support adds a few bits per segment,
indicating whether or not a program can read or write a segment, or per-
haps execute code that lies within the segment. By setting a code segment
to read-only, the same code can be shared across multiple processes, with-
out worry of harming isolation; while each process still thinks that it is ac-
cessing its own private memory, the OS is secretly sharing memory which
cannot be modified by the process, and thus the illusion is preserved.

An example of the additional information tracked by the hardware
(and OS) is shown in Figure 16.5. As you can see, the code segment is
set to read and execute, and thus the same physical segment in memory
could be mapped into multiple virtual address spaces.

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)
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SEGMENTATION 7

With protection bits, the hardware algorithm described earlier would
also have to change. In addition to checking whether a virtual address is
within bounds, the hardware also has to check whether a particular access
is permissible. If a user process tries to write to a read-only segment, or
execute from a non-executable segment, the hardware should raise an
exception, and thus let the OS deal with the offending process.

16.5 Fine-grained vs. Coarse-grained Segmentation

Most of our examples thus far have focused on systems with just a
few segments (i.e., code, stack, heap); we can think of this segmentation
as coarse-grained, as it chops up the address space into relatively large,
coarse chunks. However, some early systems (e.g., Multics [CV65,DD68])
were more flexible and allowed for address spaces to consist of a large
number of smaller segments, referred to as fine-grained segmentation.

Supporting many segments requires even further hardware support,
with a segment table of some kind stored in memory. Such segment ta-
bles usually support the creation of a very large number of segments, and
thus enable a system to use segments in more flexible ways than we have
thus far discussed. For example, early machines like the Burroughs B5000
had support for thousands of segments, and expected a compiler to chop
code and data into separate segments which the OS and hardware would
then support [RK68]. The thinking at the time was that by having fine-
grained segments, the OS could better learn about which segments are in
use and which are not and thus utilize main memory more effectively.

16.6 OS Support

You now should have a basic idea as to how segmentation works.
Pieces of the address space are relocated into physical memory as the
system runs, and thus a huge savings of physical memory is achieved
relative to our simpler approach with just a single base/bounds pair for
the entire address space. Specifically, all the unused space between the
stack and the heap need not be allocated in physical memory, allowing
us to fit more address spaces into physical memory.

However, segmentation raises a number of new issues. We’ll first de-
scribe the new OS issues that must be addressed. The first is an old one:
what should the OS do on a context switch? You should have a good
guess by now: the segment registers must be saved and restored. Clearly,
each process has its own virtual address space, and the OS must make
sure to set up these registers correctly before letting the process run again.

The second, and more important, issue is managing free space in phys-
ical memory. When a new address space is created, the OS has to be
able to find space in physical memory for its segments. Previously, we
assumed that each address space was the same size, and thus physical
memory could be thought of as a bunch of slots where processes would
fit in. Now, we have a number of segments per process, and each segment
might be a different size.
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8 SEGMENTATION
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Figure 16.6: Non-compacted and Compacted Memory

The general problem that arises is that physical memory quickly be-
comes full of little holes of free space, making it difficult to allocate new
segments, or to grow existing ones. We call this problem external frag-
mentation [R69]; see Figure 16.6 (left).

In the example, a process comes along and wishes to allocate a 20KB
segment. In that example, there is 24KB free, but not in one contiguous
segment (rather, in three non-contiguous chunks). Thus, the OS cannot
satisfy the 20KB request.

One solution to this problem would be to compact physical memory
by rearranging the existing segments. For example, the OS could stop
whichever processes are running, copy their data to one contiguous re-
gion of memory, change their segment register values to point to the
new physical locations, and thus have a large free extent of memory with
which to work. By doing so, the OS enables the new allocation request
to succeed. However, compaction is expensive, as copying segments is
memory-intensive and generally uses a fair amount of processor time.
See Figure 16.6 (right) for a diagram of compacted physical memory.

A simpler approach is to use a free-list management algorithm that
tries to keep large extents of memory available for allocation. There are
literally hundreds of approaches that people have taken, including clas-
sic algorithms like best-fit (which keeps a list of free spaces and returns
the one closest in size that satisfies the desired allocation to the requester),
worst-fit, first-fit, and more complex schemes like buddy algorithm [K68].
An excellent survey by Wilson et al. is a good place to start if you want to
learn more about such algorithms [W+95], or you can wait until we cover
some of the basics ourselves in a later chapter. Unfortunately, though, no
matter how smart the algorithm, external fragmentation will still exist;
thus, a good algorithm simply attempts to minimize it.
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SEGMENTATION 9

TIP: IF 1000 SOLUTIONS EXIST, NO GREAT ONE DOES

The fact that so many different algorithms exist to try to minimize exter-
nal fragmentation is indicative of a stronger underlying truth: there is no
one “best” way to solve the problem. Thus, we settle for something rea-
sonable and hope it is good enough. The only real solution (as we will
see in forthcoming chapters) is to avoid the problem altogether, by never
allocating memory in variable-sized chunks.

16.7 Summary

Segmentation solves a number of problems, and helps us build a more
effective virtualization of memory. Beyond just dynamic relocation, seg-
mentation can better support sparse address spaces, by avoiding the huge
potential waste of memory between logical segments of the address space.
It is also fast, as doing the arithmetic segmentation requires is easy and
well-suited to hardware; the overheads of translation are minimal. A
fringe benefit arises too: code sharing. If code is placed within a sepa-
rate segment, such a segment could potentially be shared across multiple
running programs.

However, as we learned, allocating variable-sized segments in mem-
ory leads to some problems that we’d like to overcome. The first, as dis-
cussed above, is external fragmentation. Because segments are variable-
sized, free memory gets chopped up into odd-sized pieces, and thus sat-
isfying a memory-allocation request can be difficult. One can try to use
smart algorithms [W+95] or periodically compact memory, but the prob-
lem is fundamental and hard to avoid.

The second and perhaps more important problem is that segmentation
still isn’t flexible enough to support our fully generalized, sparse address
space. For example, if we have a large but sparsely-used heap all in one
logical segment, the entire heap must still reside in memory in order to be
accessed. In other words, if our model of how the address space is being
used doesn’t exactly match how the underlying segmentation has been
designed to support it, segmentation doesn’t work very well. We thus
need to find some new solutions. Ready to find them?
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Homework (Simulation)

This program allows you to see how address translations are performed
in a system with segmentation. See the README for details.

Questions

1. First let’s use a tiny address space to translate some addresses. Here’s a sim-
ple set of parameters with a few different random seeds; can you translate
the addresses?
segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 0

segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 1

segmentation.py -a 128 -p 512 -b 0 -l 20 -B 512 -L 20 -s 2

2. Now, let’s see if we understand this tiny address space we’ve constructed
(using the parameters from the question above). What is the highest legal
virtual address in segment 0? What about the lowest legal virtual address in
segment 1? What are the lowest and highest illegal addresses in this entire
address space? Finally, how would you run segmentation.py with the
-A flag to test if you are right?

3. Let’s say we have a tiny 16-byte address space in a 128-byte physical mem-
ory. What base and bounds would you set up so as to get the simulator to
generate the following translation results for the specified address stream:
valid, valid, violation, ..., violation, valid, valid? Assume the following pa-
rameters:
segmentation.py -a 16 -p 128

-A 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

--b0 ? --l0 ? --b1 ? --l1 ?

4. Assume we want to generate a problem where roughly 90% of the randomly-
generated virtual addresses are valid (not segmentation violations). How
should you configure the simulator to do so? Which parameters are impor-
tant to getting this outcome?

5. Can you run the simulator such that no virtual addresses are valid? How?
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